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Abstract Females have often been reported to have a greater muscle fatigue re-
sistance than males, especially during exercise at low-to-moderate intensities.
Differences in muscle mass, muscle metabolism and voluntary activation
patterns have been the primary explanations for the differences in perfor-
mance and physiological responses to exercise between sexes. However, while
ample data are available for isometric contractions, dynamic activity is a less
studied mode of exercise, and there is even less information regarding mul-
tiple-sprint exercise (MSE). This is surprising given that MSE places unique
demands on metabolic processes in the muscle where energy supply oscillates
between fuelling contractile activity and restoring homeostasis. As such,
MSE provides a rich area for future applied research. This review examines
the limited data available concerning the physiological responses of males
and females to sprint exercise, and discusses the methodological confounds
arising from non-appropriate comparison methods. Based on original findings,
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we highlight that sex differences in the absolute mechanical work performed
during a given task might explain a significant part of the differences in
physiological responses of males and females to sprint exercise. We therefore
suggest that future studies using male and female subjects to answer basic
physiological questions use mechanical work as a covariate.

Human skeletal muscle fatigue can be defined
as a transient, exercise-induced reduction in the
maximal force capacity of the muscle.[1,2] Several
mechanisms have been proposed that contribute
concurrently to the fatigue exhibited by a muscle
or muscle group following exercise, and the clas-
sic approach used to identify the cause of muscle
fatigue has been to distinguish between ‘central’
and ‘peripheral’ mechanisms. Typically, peripheral
skeletal muscle fatigue involves processes occur-
ring at or distal to the neuromuscular junction, in
the presence of unchanged or increasing central
motor output.[3-6] On the other hand, central fati-
gue is due to failure at a site within the CNS.[2,7,8]

Studies applying an electrical stimulus to peri-
pheral nerves and/or a magnetic stimulus to the
motor cortex have demonstrated that both ‘cen-
tral’ and ‘peripheral’ mechanisms are involved
during fatiguing contractions, and a number of
good scientific reviews on this topic are available
to the reader.[1,2]

It has also been demonstrated that human
skeletal muscle fatigue is influenced by the bio-
logical sex of the individual.[9-11] Studies on the
physiological function of females have mostly
concentrated on isolated muscle exercise (e.g.
isometric and isokinetic contractions of a single
muscle group). This work has provided tre-
mendous advances in our understanding of pos-
sible mechanisms for these specific tasks. In the
last decade, however, the popularity of team and
court sports, which require the athlete to sprint
intermittently over the course of the game, has
increased.[12-14] Consequently, many authors have
explored the physiology of multiple-sprint exercise
(MSE). This particular pattern of activity involves
repeated bouts of short duration (£8 seconds),
high-intensity (>300%

.
VO2max) exercise, separated

by short rest duration (£30 seconds). Such short
rest periods have been shown to negatively affect
subsequent sprint performance.[15,16] Current

knowledge ofMSE physiology is based largely on
the responses of young adult males, and this is
somewhat surprising since in most countries team
and court games are also popular sports among
females. More importantly, there is now strong
evidence that the mechanisms underlying force
decline are highly task specific.[1,2] This means
that muscle fatigue can be induced by a combi-
nation of processes contributing in different ways
to the decline in force, according to the details
of the task (intensity, duration, mode of contrac-
tion, muscle, etc.). As such, one cannot rely on
data arising from isometric contraction research
to explain sex differences in performance and
muscle fatigue during MSE. Such whole-body
tasks (e.g. running and cycling) need to be further
explored to achieve greater understanding of
female physiology.

This paper begins with an updated review of
general physiological sex differences that could
potentially contribute to the sex differences ob-
served during MSE. Then we discuss the relative
importance of these factors in the fatigue pro-
cesses during sprint exercise. Finally, we sum-
marize the limited number of studies that have
investigated the physiological responses to MSE
in females versus males, and evaluate the evi-
dence for and against the existence of a sex-
related difference in the manifestation of skeletal
muscle fatigue in response to MSE. In particular,
we question whether males and females display
different degrees of fatigue during MSE.

1. General Physiological Sex Differences

It is well accepted that males possess greater
absolute muscle strength and produce greater
power output scores than their female counter-
parts in a variety of muscles and in a variety of
exercise conditions.[17-30] Research has also fairly
well documented the influence of sex on muscle
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fatigue, typically reporting that a female’s muscle
is capable of longer endurance times (i.e. greater
resistance to fatigue) and faster recovery (i.e.
ability to restore force or power output) than a
male’s muscle.[23,29,31-35] This has been observed
with the use of various fatiguing, isometric pro-
tocols at low to moderate intensities, and during
sprint exercise, where females have been observed
to maintain the initial absolute power output for
a longer time than males.[19,36,37]

Several mechanisms may explain the effect of
sex on performance and fatiguability. Evidence
supporting body composition (e.g. lean and fat
mass), muscle metabolism (e.g. hormonal reg-
ulation, enzymatic activities and substrate utili-
zation), muscular characteristics (e.g. typology)
and motor unit discharge rate as factors account-
ing for the sex differences are discussed below.

1.1 Morphology and Body Composition

Differences in morphology and body compo-
sition are the most visible and obvious differences
when one first compares the two sexes. On aver-
age, and at the same age, males are taller
(+11 cm), heavier (+13 kg) and have a greater lean
mass (+18 kg) and lower fat mass (-5 kg) than
their female counterparts.[28,38-41] These para-
meters have therefore often been suggested to
explain sex differences in performance.[10,38,42,43]

The primary intrinsic determinants of maximum
voluntary strength include cross-sectional area
(CSA) of the muscle or muscle groups, specific
tension (force per unit CSA, which may be af-
fected by the fibre type distribution and the
amount of non-contractile tissue present in the
muscle), and possible anatomical differences in
the mechanical advantage of a muscle acting
across a joint.[44-47] Males, having greater seg-
ment length and muscle mass, develop higher
absolute muscle force and power output than
females. For example, a significant correlation
(r = 0.91; p< 0.05) between total mechanical work
(during repeated cycle sprints) and body mass
(BM) has been reported in athletes.[48] Thus, it is
not surprising to observe smaller sex differences
when indices of performance are expressed as
a ratio to body mass, an index of lower limb

volume, or CSA of the thigh.[27,30,41,49-52] Perfor-
mances must then be scaled for body size differ-
ences to permit meaningful comparisons between
males and females.

It is important, however, to point out that
some studies indicate that muscle mass is not the
only factor accounting for the sex difference in
fatigue. In fact, while differences in performance
and fatiguability are reduced, they often persist
when the two sexes exercise at the same percentage
of initial performance, or when the data are
expressed relative to BM, lean BM (LBM), lean
volume (LV) of the active limb, and when sub-
jects are matched for strength.[16,30,37,43,50,51,53-59]

For example, Fulco and colleagues[55] have
shown that the fatigue rate of the adductor pol-
licis muscle during intermittent, isometric, sub-
maximal contractions was still »2-fold slower in
females than in males matched for strength.
When comparing the performances of males and
females during two consecutive 8-second sprints
on a cycle ergometer, it has also been observed
that males remained more powerful than females
when data were expressed relative to LBM
(+17%) and lower limb LV (+16%).[16,20] Thus,
even though body dimensions explain the major
discrepancies between the sexes in performances,
sex differences still persist when body dimensions
are appropriately controlled. Accordingly, phy-
siological factors (as opposed to muscle mass
quantity) must also contribute to the sex differ-
ence in performance.

1.2 Endocrine Status

The secretion of sex hormones is another dif-
ference between males and females. Androgens
(e.g. testosterone) increase protein synthesis and
lead to muscle hypertrophy.[60,61] The higher an-
drogen concentration found in males is therefore
likely to contribute to some sex differences (e.g.
muscle mass, selective hypertrophy of type II
fibres). On the other hand, estrogens (i.e. estrone,
estradiol and estriol) increase growth hormone
(GH) concentration, which is known to stimulate
lipolysis and to reduce glycogenolytic activity by
reducing plasma adrenaline (epinephrine) secre-
tion.[62,63] However, although the higher estrogen
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concentration in females does indeed increase
GH release at rest in young and adult females
compared with males of the same age,[64-67] ex-
ercise seems to evoke a similar incremental GH
response in both sexes.[67-69]

Sex also appears to affect the sympathetic
responses to supramaximal exercise,[56,70,71] low-
ering plasma catecholamine levels (and subse-
quently blood lactate) in females during exercise
at the same relative intensity compared with
males with similar fitness levels. While some have
attributed these differences to a direct inhibitory
effect of estradiol on the sympathetic nervous
system,[72] Sandoval and Matt[68] concluded that
these differences were most likely due to differ-
ences in the absolute workload performed by
males and females. Less absolute work would lead
to less lactate production and glycogen use, and
thus less glucose would be taken up by the muscle
for refuelling glycogen stores after exercise in
females.[68] This study therefore demonstrates
indirectly the importance of matching subjects
for total work performed before attempting to
draw any conclusion regarding sex differences.

Researchers continue to debate whether the dif-
ferent phases of the menstrual cycle affect athletic
performance and fatiguability,[73] and possibly
modify the magnitude of sex-related differ-
ences.[74,75] Some authors have reported higher
voluntary muscle strength and total work in a
short-term, all-out performance during the luteal
phase.[76-78] There is also evidence of enhanced
blood lactate removal at high intensities,[79,80]

greater O2 consumption during recovery from re-
peated cycle sprints,[76] and increased excess
post-exercise O2 consumption after prolonged ex-
ercise[81] during the luteal phase relative to the fol-
licular phase. While these metabolic changes could
improve multiple-sprint performance by enhancing
recovery between sprints,[76] such findings need to
be balanced by the many studies that suggest that
hormonal fluctuations throughout the cycle do not
contribute to sex difference in performance and
fatiguability.[82-85] In summary, the multiple con-
trasting findings clearly demonstrate that there is
currently no consensus about the impact of the
monthly hormonal fluctuations upon sex differ-
ences observed in performance and muscle fatigue.

1.3 Enzyme Activities

In vitro measurements of muscle enzyme ac-
tivities are related to whole-body energy meta-
bolism,[86] and can provide an insight into the
relative contribution of the different energy
production pathways in males and females.[70]

Very few studies have analysed the impact of
sex on the activity of enzymes involved in the
phosphagen (or alactic) energy systems. How-
ever, activities of myosine adenosine tripho-
sphatase (ATPase) and creatine phosphokinase
have been found to be higher in males than fe-
males,[87,88] suggesting a greater potential phos-
phagen energy provision in males to support
performance.

The maximal activities of glycolytic and
glycogenolytic enzymes (glycogen phosphorylase,
phosphofructokinase [PFK] and lactate dehy-
drogenase) are also lower in females.[19,42,62,87-92]

Interestingly, Jaworowski et al.[42] reported that
the higher maximal activities of glycolytic en-
zymes in males were related to the height, mass,
muscle CSA and relative area of type II fibres,
which were all significantly larger in males than in
females. As males participate more in intense
activities than females, particularly during child-
hood,[93-96] the greater glycolytic enzyme activ-
ities reported in males may then be caused
by daily activity patterns rather than intrinsic
physiological sex differences. An increased mus-
cle mass associated with a greater muscle re-
cruitment is likely to contribute to the greater
anaerobic potential in males.[36,38,55,62,97]

Assessment of oxidative enzyme activities of
the Kreb’s cycle has been contradictory; higher
values for males[87,90,92] or no sex differ-
ences[19,42,91,98] have been reported for various
enzymes. For enzymes involved in lipid oxidation,
no sex differences have been reported.[19,42,92]

Again, however, when sex differences have been
reported it is difficult to establish whether these
are attributable to training or actual sex differ-
ences. Evidence against the existence of sex dif-
ferences is provided by the observation that
oxidative enzyme activities and mitochon-
drial volume density increase have been found to
adapt in a similar manner (maximal activity and
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magnitude) following endurance exercise training
in the two sexes.[98-100]

1.4 Substrate Utilization

Sex differences in muscle metabolism during
exercise have been investigated quite thor-
oughly.[19,62,63,101,102] Overall, muscle character-
istics account for an energetic balance in which
the aerobic contribution is more important in
females during prolonged sprints[19,39,101] and
during submaximal, isometric contractions.[62,97]

For example, Hill and Smith[39] estimated the
aerobic contribution to total work during a 30-
second cycle sprint to be 25% in females and 20%
in males. According to Fulco et al.[55] and Russ
and Kent-Braun,[103] this predisposition to oxi-
dative phosphorylation would allow a faster ATP
resynthesis during recovery. On the contrary, a
greater reliance on the anaerobic glycolytic
pathway in males would induce a greater fatigu-
ability and a slower recovery.[23,97]

The reduced reliance on glycolytic energy in
females may be related to other factors in addi-
tion to the lower maximal activation velocity of
glycolytic enzymes and the greater reliance on fat
metabolism. For example, the lower increase in
plasma catecholamine concentration during
sprints in females may also influence the stimu-
lation of glycolytic enzymes.[54,56,104,105] Therefore,
a reduced maximal activation velocity of glyco-
lytic enzymes, a reduced stimulation of glycolytic
pathways, and greater reliance on fat oxidation
are all likely to contribute to muscle glycogen
sparing and the lower blood lactate concentra-
tion reported in females after a 30-second sprint
on a cycle ergometer.[54,56,106]

While a lack of sex difference in ATP or phos-
phocreatine (PCr) reduction has been reported
in type I and type II fibres after a 30-second
Wingate test,[54] one study has demonstrated a
smaller ATP reduction in females than in males in
type II fibres among three Wingate tests sepa-
rated by 20 minutes of recovery.[36] The authors
explained these differences via a faster ATP
resynthesis in females via a greater inosine
monophosphate (IMP) reamination during the
recovery phases.[36] On another occasion, the

same protocol (three 30-second Wingate tests
interspaced with 20 minutes of recovery) re-
sulted in a similar ATP and PCr content decrease
and alactic ATP turnover rate in males and
females.[107] Males, compared with females, have
also been found to exhibit a greater decrease in
ATP and PCr concentrations after MSE consist-
ing of 5 · 6-second sprints every 30 seconds.[108]

This lack of consistency for exercise-induced
metabolism changes is likely to be related to
biopsy timing and the protocols used rather than
actual sex differences.

1.5 Muscle Fibre Properties

Based on the histochemical staining properties
for the myofibrillar myosin ATPase, different
fibre categories can be distinguished in hu-
man skeletal muscle. It is generally accepted that
untrained females have smaller fibre CSA in all
fibre types than untrained males in the muscles of
the upper and lower limbs, as do female athletes
and bodybuilders compared with their male
counterparts.[19,29,38,42,54,62,91,92,98,109-112]

Studies in which fibre percentage has been esti-
mated are less consistent. While several authors
failed to observe any differences in the mean pro-
portion of type I, IIA and IIX fibres (% number)
betweenmales and females from similar sport spe-
cialties and fitness level,[19,36,38,42,98,101,110,111,113]

others have reported a greater distribution of
type I fibres and lower distribution of type IIX
fibres in females.[29,91,92,109] Such discrepancies
may be related to sampling bias in subject selec-
tion and/or problems with the accurate estima-
tion of fibre percentage.[29] Nonetheless, fibre size
and property differences between sexes may have
an impact on the peak power output and on the
subsequent ability to maintain power output.

1.6 Neural Activation

Neuromuscular activation patterns are in-
creasingly described in males and females during
maximal tasks, but it is difficult to form precise
conclusions about a typical trend in neuromus-
cular responses to exercise, as results are highly
dependent upon the nature of the task.[103]

Further difficulty arises from the controversial
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use of electromyogram (EMG) recordings. In-
deed, while useful information (e.g. the net motor
unit activity) can be extracted from an appro-
priately recorded surface EMG, there remains a
complex mismatch between the spinal cord out-
put and both EMG amplitude and frequency
parameters, which limits the interpretation of
EMG data when recorded alone.[114,115]

Nonetheless, the maximum voluntary EMG
has been found to decrease only in males, after
performing 20 repetitions of a maximal squat-
lift with a load of 100% of the one repetition
maximum.[116] This suggests an attenuation of
skeletal muscle recruitment after a strenuous
heavy-resistance exercise in males compared with
females. Failure in voluntary activation during
maximal tasks has also been directly examined
between sexes. For example, Russ and Kent-
Braun[103] observed a greater neural activation
deficit (i.e. reduction in voluntary activation as
assessed from a supramaximal train of stimuli
superimposed onto a maximal voluntary con-
traction [MVC] without any concomitant change
in the compound muscle action potential nor
muscle twitch characteristics) in males than in
females during maximal, intermittent, isometric
contractions of the dorsiflexor muscles (5-second
contraction, 5-second rest conducted to exhaus-
tion). More recently, transcranial magnetic sti-
mulation of the motor cortex to examine the
contribution of supraspinal fatigue in perfor-
mance decrement[8,117,118] has been applied
to males and females during a maximal task
(six 22-second MVC of the elbow flexors, sepa-
rated by 10 seconds).[119] The authors concluded
that the greater muscle fatigue (i.e. torque re-
duction) in males than in females was not ex-
plained by a difference in supraspinal fatigue but
rather involved mechanisms located within the
muscles.

A greater peripheral fatigue (as assessed via
M-wave amplitude alterations with no con-
comitant reduction in EMG amplitude) for males
than females has also been reported during in-
termittent MVCs of the adductor pollicis muscle
(5-second contraction, 2-second rest conducted
for 3 minutes).[53] Even though males were
stronger than females in this study (mean MVC

force: males 10.0 – 2.7 kg vs females 6.6 – 1.1 kg;
p < 0.05), the fatigue index did not show a sig-
nificant sex difference (males 45% vs females
38%; p>0.05), which suggests a similar amount
of fatigue in both sexes. These data indicated that
males were more susceptible to transmission
failure at the neuromuscular junction and/or de-
creases in muscle membrane excitability.[53] In-
terestingly, during a submaximal contraction of
the lumbar musculature sustained to exhaustion,
a faster compression of the median frequency has
been reported in males than in females,[31] which
also suggests higher fibre conductibility impair-
ments[114,120-122] in males compared with females.

Overall, the clear distinction of neuromuscular
activation patterns in males versus females in
exercise physiology is not an easy task, as they are
underpinned by the task characteristics. There-
fore, it is likely that the central motor output to
locomotor muscles will differ during MSE, as
well as the ‘central’ and/or ‘peripheral’ nature of
fatigue mechanisms. Nonetheless, such differ-
ences in neuromuscular physiology between the
sexes could contribute to the difference in fatigue
resistance observed during repeated sprints.

1.7 Summary

Morphological, metabolic and neuromuscular
properties of the muscle tissue are different be-
tween males and females, and predominately ex-
plain the differences in strength, power output
and fatigue resistance between the sexes. His-
torically, body composition has been the princi-
pal factor used to account for sex differences in
performances, but research has demonstrated
that enzyme activities, substrate use and central
motor output also contribute. Muscle fatigue in
males and females during sprint exercise has not
been studied extensively in the literature, and
as a consequence, the influence of the above-
discussed factors is not well understood. The final
sections of this review focus on male versus fe-
male performance and muscle fatiguability dur-
ing sprint exercise, with particular emphasis on
analysing the appropriateness of current methods
used to compare the two sexes.
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2. Sex Differences in Sprint-Induced
Muscle Fatigue

The introduction and section 1 of this article
have highlighted the importance of sprinting and
repeated sprinting to team-sport performance,
and the origins of sex differences in terms of
general performance and fatiguability. An un-
derstanding of sprint metabolism is, at this point,
necessary to comprehend the demands placed on
team-sport athletes during competition, and the
reader is referred to the detailed reviews of Gla-
ister[123] and Spencer and colleagues.[124] Al-
though studies have shown that females have
a greater muscular endurance than males du-
ring isometric exercises,[31,55,57,103,119] there is
a lack of information on the sex difference in
sprint-induced fatigue, considering the amount of
information documenting strength and power
output differences.[19,28,29,33,35,51,101,125-127] After
brief synopses of the determinants of fatigue
during sprint exercise, this section focuses on the
sex difference in fatigue during single and multi-
ple sprints of varied duration.

2.1 Single-Sprint Exercise

2.1.1 Determinants of Fatigue

Many studies have examined the participation
of the energy-producing systems during maximal
sprinting exercise of varying duration (10-, 20-
and 30-second sprints). During such sprints, peak
power is quickly reached in 2–3 seconds (before
peak pedal speed), and thereafter power de-
clines.[20,128-131] This implies a very high energy
need from the very beginning of the sprint. Over-
all, during a single, short-duration sprint
(£6 seconds), the rate ofATPutilization is extremely
high, with a mean value of ~15mmol/kg/sec dry
muscle (d.m.).[132] Approximately 50% of theATP is
supplied by the degradation of PCr, while in-
tramuscular ATP stores, anaerobic glycolysis and
aerobic energy provide the remainder.[106,132-134] As
the sprint duration increases, energy system con-
tribution is modified, and one notes a progressively
greater participation of anaerobic glycolysis and
oxidative metabolism (figure 1).[128,135-138] For all
sprint durations, it has been demonstrated thatATP
depletion is minimal and is unlikely to constitute a

limiting factor of performance.[130,132,133,137,140]

However, such intensities result in a severe reduc-
tion in intramuscular PCr concentration. Indeed,
PCr depletion after 6 seconds of sprinting has
been reported to be around 35–55% of resting
values.[132,133,140,141] The study of muscle metabolic
responses to 10 and 20 seconds of cycle ergometer
sprinting demonstrated that PCr was reduced
by about 55% after 10 seconds and about 73%
after 20 seconds.[135,136,142] Following a 30-second
sprint, the depletion is even greater (i.e. up to
80%).[130,133,135,143-146] Maximal sprinting activity
thus requires considerable contribution of PCr to
provide energy, and it is likely that the ability to
sustain sprint exercise will be affected by PCr
availability in the working muscles. This is sup-
ported by the direct relationship (r2= 0.74; p< 0.05)
between the percentage recovery of PCr following a
recovery period and the subsequent recovery of
performance, expressed as percentage of mean
power output (figure 2).[143] These data were later
confirmed by high correlations between %PCr re-
synthesis and the percentage recovery of mean
power (r= 0.84; p< 0.05) and mean pedalling speed
(r= 0.91; p< 0.05) during the initial 10 seconds of a
second 30-second sprint.[135]

From muscle lactate concentrations, it has
been estimated that >40% of total anaerobic
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Fig. 1. Schematic illustration of relative energy system contribu-
tion to ATP resynthesis (in percentage of total energy) during
sprint of varying duration (adapted from Bogdanis et al.,[128,135,136]

Gaitanos et al.,[132] Medbø and Tabata[139] and Spriet et al.[138]).
PCr = phosphocreatine.
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energy during a single 6-second sprint bout is
provided via anaerobic glycolysis.[132,133] The
subsequent decline in muscle glycogen that oc-
curs during repeated, maximal sprints could the-
oretically contribute to impaired performance via
a reduction in substrate and subsequent glycoly-
tic flux. However, the decrease in muscle glyco-
gen has been reported to be only ~30% during a
30-second cycle or treadmill sprint.[130,147-149]

Therefore, glycogen stores do not represent a
limiting factor in this type of activity.

The most significant source of anaerobic ATP
during intense activities lasting at least 10–20
seconds is from glycolysis. Glycogenolysis-glycolysis
has been associated with the accumulation of
lactate and hydrogen (H+) ions. Thus, high levels
of power output have been associated with a
decrease in blood and muscle pH on several
occasions. For example, a muscle pH of 6.73
units was estimated after a maximal 30-second
sprint on a non-motorized treadmill.[130] This
would have, in vitro, inhibited PFK and glycogen
phosphorylase activities, the key regulatory or
rate-limiting enzymes in this pathway.[150-153]

This would lead to a reduced rate of ATP pro-
duction, which might set an important limita-
tion to muscle performance.[128,135,151,152,154-156]

A more important consequence of the decrease in
pH may be in affecting the muscle contractile
mechanism itself, by decreasing the energy avail-

able for contraction per ATP hydrolysed.[152,154]

In fact, acidosis interferes with the effectiveness
of calcium (Ca2+) activation at many sites in the
excitation-contraction process.[150,154,157,158] Fi-
nally, a decline in muscle pH may contribute to
the occurrence of central fatigue. Indeed, the ty-
pical association between pH and EMG[7] is
consistent with the role of pH in feedback to the
CNS and a subsequent alteration in central mo-
tor drive during the development of fatigue.
These metabolic perturbations have been found
to act on nerve terminations of group III and IV
afferents, inducing a reflex inhibition of the cen-
tral drive.[3,90,159-161] Thus, H+ accumulation may
contribute to fatigue during sprint exercise.

Sprint exercise also results in other important
ionic perturbations that may contribute to fati-
gue during sprint exercise. In particular, sprint
exercise changes the extracellular potassium (K+)
ion concentration ([K+]) far beyond the narrow
limits seen in resting subjects. It has been sug-
gested by some[150,162-166] that subsequent altera-
tions in sarcolemma excitability induce muscle
fatigue by preventing cell activation. For example,
Medbø and Sejersted[165] reported a >200% in-
crease in plasma [K+] after a 1-minute running
sprint on a motor-driven treadmill (10.5% in-
clination). In muscles contracting at high work-
loads, inorganic phosphate (Pi) also accumulates
because PCr is broken down to creatine and Pi.
The [Pi] increases substantially in the myoplasm
during intense exercise and affects both the myo-
fibrillar proteins and activation processes.[167-169]

Although not as extensively studied, changes
in skeletal muscle recruitment may contribute
to performance decrement during maximal
sprinting exercise. The only two studies to have
examined neuromuscular fatigue (via EMG
recording) during a single sprint are those of
Vandewalle et al.[170] and Hunter et al.[171] The
first study observed a parallel decline in power
output and integrated EMG during a 45-second
cycle sprint, and suggested a progressive attenuation
of spatial and/or temporal recruitment of motor
units during this type of exercise. On the other
hand, the EMG amplitude has been shown
to remain unchanged (whereas power output
declined) during a 30-second cycle sprint.[171]
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0
0

60 70 80 90 100

P
er

ce
nt

ag
e 

of
 M

P
O

 r
ec

ov
er

y

80

84

88

92

96

100

r2 = 0.74

Fig. 2. Relationship between the percentage of phosphocreatine
(PCr) resynthesized during the 3-minute recovery period and the
mean power output (MPO) achieved during the 6-second sprint (re-
lative to resting value) performed 3 minutes after a 30-second cycle
sprint (reproduced from Bogdanis et al.[143] with permission).

264 Billaut & Bishop

ª 2009 Adis Data Information BV. All rights reserved. Sports Med 2009; 39 (4)



The authors completed the data with an analysis
of the frequency power spectrum, and demon-
strated a shift of the mean power frequency to-
wards lower values (-14.7%; p< 0.05). According
to several authors,[1,114,121,172] this might be
caused by an accumulation of metabolites and a
consequent decrease in muscle pH, and/or some
form of neural control through reflex regulation
of muscle force to prevent muscle damage.[173-175]

Clearly, more studies using electrically evoked
stimulation will need to be conducted to clarify
whether voluntary drive parallels the power out-
put decline observed during maximal sprint, to
ascertain if a failure of excitation is present under
these conditions.

2.1.2 Fatigue during Single-Sprint Exercise in
Males and Females

The few studies providing information on
performances and fatiguability during sprints in
males and females are shown in table I. During a
30-second, supramaximal cycling exercise (such
as the Wingate anaerobic test), males develop
greater absolute power output levels than females
(on average, peak power and mean power are
40% and 30% greater, respectively). These dis-
crepancies are reduced, but overall remain sig-
nificant, when results are expressed relative to
BM, LBM or leg LV,[37,39,51,56,58,106,178] meaning
that other factors, likely related to the capacity to
sustain a high ATP resynthesis rate, should ac-
count for the sexual dimorphism in prolonged
sprints.[51] As previously discussed (section 1), the
greater potential for anaerobic metabolism in
males (due to greater glycolytic enzyme activities)
and the larger muscle fibre CSA (associated with
greater concentration of male sex steroids) are
likely to explain the greater absolute scores in
males during such sprints.

With respect to fatigue, however, it is usually
accepted that, compared with males, females are
capable of maintaining their peak power output
for a longer time within sprints. For example,
Froese and Houston[37] reported a greater fatigue
index (decrement in absolute power output)
in males than in females over the course of a
30-second cycle sprint. Such observations may be
related to the greater reliance of females on

aerobic metabolism[55,100,103,179,180] associated in
turn with reduced muscle H+ ion accumulation
and reduced ionic disturbances.[97,181] Addition-
ally, the greater ability of females to maintain
motor unit activation at exhaustion[103,116] may
contribute to a better maintenance of power
output. However, when expressed per unit of BM
or leg volume, the sex difference in muscle fatigue
disappears; although males exhibited a greater
absolute power decrease than females (-433W vs
-315W, respectively; p< 0.05) during a 30-second
cycle sprint, these discrepancies disappeared
when values were related to the peak power de-
veloped during the sprint (mean fatigue index:
males 47% vs females 48%; p>0.05).[19] Hill and
Smith[39] and Weber et al.[52] confirmed these
data, showing a similar relative power output
decline in males (mean 48%) and females (mean
52%). Thus, these results suggest that rather than
sex differences, differences in fatiguability during
30-second sprints may actually be related to the
greater initial power output of males.

When looking at the data obtained during
shorter sprints (<10 seconds), leg peak power
output (PPO) reached during a cycling force-
velocity test was greater in boys than in girls at the
same age (14–17.5 years old).[27]Moreover, for the
same leg length, the optimal pedalling frequency
was higher in boys than in girls, with no sex dif-
ference observed for the optimal force.[27] Better
performances (+12% to +22%) have also been re-
ported in males during 30m and 36.5m track
sprints (»4–6 seconds),[28,51] 5-second treadmill
sprints,[59] and 8-second cycle sprints.[16,20] These
results are likely to reflect the influence of an-
drogens on qualitative muscular factors (i.e. type
II muscle fibres, glycolytic ability) and then on
male mechanical scores. The observed sex differ-
ences of the optimal and maximal pedalling fre-
quency during cycle ergometer sprint[16,27] may
be related to differences in proportion and/or re-
cruitment of fast-twitch fibres. In males (in con-
trast to females), it has been suggested that a
selective hypertrophy of type II fibres[42,182] may
occur in response to greater circulating testos-
terone levels.[183] However, in contrast to results
for the longer sprints, the sex discrepancy for short-
sprint performance remained present when data
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Table I. Sex differences in mechanical, metabolic and hormonal responses to sprint exercise

Study Exercise mode Protocol Principal significant observations

Jacobs et al.[106] (1983) Cycle 30 s Wingate MPO (abs. & rel. to BM): M > F

D [Lac-] after sprint: M > F

Murphy et al.[176] (1986) Cycle 30 s Wingate PPO & MPO (abs. & rel. to BM, LBM): M > F

Froese and Houston[37] (1987) Cycle 30 s Wingate PPO & TW (abs. & rel. to BM, LLV): M > F

Fatigue index (abs.): M > F; (rel. to BM): NS

Hill and Smith[39] (1993) Cycle 30 s Wingate PPO, MPO, TW (abs. & rel. to BM): M > F

Fatigue index: NS

Anaerobic work (abs. & rel. to BM): M > F

Aerobic proportion to TW: F > M

Gratas-Delamarche et al.[56] (1994) Cycle 30 s Wingate PPO & MPO (abs. & rel. to BM, LBM): M > F

D [Lac-] after sprint: M > F

D [adrenaline] after sprint: M > F

Esbjörnsson-Liljedahl et al.[54] (1999) Cycle 30 s Wingate PPO & MPO (abs. & rel. to BM): M > F

MPO (rel. to LBM): M > F

D [ATP] & [PCr] after sprint in type I & II: NS

D [glycogen] after sprint in type I: M > F

D [Lac-] after sprint in type I: M > F

Vincent et al.[58] (2004) Cycle 30 s Wingate PPO & MPO (abs. & rel. to BM, LBM): M > F

D [glucose] after sprint: F > M

D [insulin] after sprint: F > M

Weber et al.[52] (2006) Cycle 30 s Wingate PPO & MPO (abs. & rel. to BM): M > F

PPO & MPO (rel. to LBM and LLV): NS

Fatigue index: NS

Perez-Gomez et al.[51] (2008) Cycle 30 s Wingate PPO & MPO (abs.): M > F

PPO (rel. to LLV): NS

MPO (rel. to LLV): M > F

Esbjörnsson-Liljedahl et al.[19] (1993) Cycle 3 · 30 s Wingate

(20 min)

PPO & MPO (abs. & rel. to BM): M > F

Fatigue index (abs.): M > F; (rel. to PPO): NS

Total LDH activity: M > F

Bodin et al.[107] (1994) Cycle 3 · 30 s Wingate

(20 min)

D [PCr] & [ATP] after sprints: NS

Alactic ATP turnover rate: M = F

Esbjörnsson-Liljedahl et al.[36] (2002) Cycle 3 · 30 s Wingate

(20 min)

PPO & MPO (abs.): M > F; (rel.): NR

PPO decrease from sp1 to sp3: M > F

MPO decrease from sp1 to sp3: M = F

D [ATP] & [IMP] after sprint in type II: M > F

D [glycogen] after sprint in type I: M > F

Jacobs et al.[106] (1983) Cycle 10 s sprint MPO (abs. & rel. to BM): M > F

D [Lac-] after sprint: M > F

Winter et al.[30] (1991) Cycle 4 · 8 s sprint

(5 min)

PPO (abs.): M > F; (rel. to LLV): NS

PPO (rel. to LLV-analysis of covariance): M > F

Martin et al.[27] (2004) Cycle 2 · 5–8 s sprint

(3 min)

Vopt (rel. to LL-analysis of covariance): M > F

(young adults: 14–17.5 y of age)

Doré et al.[177] (2005) Cycle 3 · 5–8 s sprint

(4 min)

PPO (rel. to LLV-analysis of covariance): M > F

(young adults: 16–20 y of age)

Mayhew and Salm[28] (1990) Run-track 36.5 m Sprint time: F > M

abs. = absolute value; BM = body mass; F = females; IMP = inosine monophosphate; Lac- = lactate; LBM = lean body mass; LDH = lactate

dehydrogenase; LL = leg length; LLV = lean leg volume; M = males; min = minutes; MPO = mean power output; NR = not reported; NS = not

significant; PCr = phosphocreatine; PPO = peak power output; rel. = relative value; run-track = over-ground running; s = seconds; sp1 = sprint

1; TW = total work; Vopt = optimal velocity (i.e. velocity to reach peak power output); [yy] indicates concentration; D indicates delta changes

from rest to the end of the exercise.
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were expressed per unit of BM (20.5%), LBM
(17%), leg LV (12%) and thigh LV (16%).[16,20,59]

Comparisons of within-sprint fatigue patterns
during short-duration sprints (<10 seconds) are
difficult to find in the literature. We are aware of
only one study that has directly investigated sex
differences in fatigue pattern within a brief
sprint.[16] Subjects in this study were only mat-
ched on the basis of their physical activity (males
11.8 – 6.5 vs females 10 – 4.2 h/week; p>0.05).
The authors demonstrated that during a single,
all-out, 8-second cycle sprint bout against an
optimal force (males 86 – 12N vs females
53 – 8N; p < 0.05; optimal forces corresponded to
»10% of body mass for each sex), females had a
greater decrement in relative power output than
males (-31% vs -19% of PPO, respectively;
p< 0.05). In another study conducted on ten in-
termittent, 6-second sprints on a non-motorized
treadmill,[104] the two sexes seemed to display
similar power decrement within the first sprint of
the series (males -32%, females -27%), but un-
fortunately statistical analysis was not performed
on these data.

In conclusion, more data clearly need to be
collected from females to better define metabolic
and neuromuscular changes, and to examine fa-
tigue patterns during sprint exercise, especially
during brief sprint exercise (<10 seconds). In light
of the available results, one may imagine that
males and females would exhibit similar relative
performance decrements when repeated sprints
are involved.

2.2 Multiple-Sprint Exercise

2.2.1 Determinants of Fatigue

There are very few data on the relative energy
system contributions during MSE involving
consecutive, all-out sprints of short duration.
During brief periods of maximal work, ATP
provision is maintained through the integration
of various metabolic processes. However, as
work bouts are repeated, the metabolic response
to subsequent work bouts will be affected by the
previous exercise and the duration of the inter-
vening rest periods. Due to the complexity of
physiological processes that regulate this type of

activity, research shows that MSE places con-
siderable demands on both aerobic and anaero-
bic pathways, although the relative contribution
from each of these sources is still an issue of
controversy.[48,123,132,184,185]

Muscular fatigue that develops during MSE is
associated with signs of energy deficiency, i.e.
increased concentrations of IMP, inosine, hy-
poxanthine and uric acid.[15,48,148,186-189] Since
energy provision during MSE is maintained pre-
dominantly by anaerobic sources (PCr degrada-
tion and anaerobic glycolysis), deficiencies in
energy provision are likely to be associated with
limitations in anaerobic metabolism.[123,124] In
particular, close relationships (0.84 < r < 0.86;
p < 0.05) have been reported between PCr re-
synthesis and the recovery of power output in
different sprinting conditions,[135,143] suggesting
that the ability to reproduce high power outputs
is directly related to the resynthesis of PCr. This
is supported by studies showing that occlusion
during recovery (and hence the prevention of PCr
resynthesis) impairs the recovery of power out-
put, while creatine supplementation improves
repeated-sprint performance.[190-193] Consequently,
some of the decrease in power output during
MSE can probably be attributed to the decrease
in the absolute contribution of PCr to the total
ATP production from sprint one to sprint ten
(44.3 – 4.7 vs 25.3 – 9.7mmol/kg d.m., respec-
tively).[132] In addition, a large decrease in the
contribution of anaerobic glycogenolysis (11-fold
reduction) and glycolysis (8-fold reduction) to
energy supply has been reported from the first to
tenth sprint (10· 6-second sprints, 30-second re-
covery),[132] which is also likely to contribute to
the appearance of fatigue during MSE.

The accumulation of metabolites has also been
demonstrated to correlate with fatigue during
MSE. In particular, the accumulation of H+

(acidosis) may impair performance through effects
on the contractile machinery and its potential
role in glycolytic inhibition (through negative
effects on glycolytic enzymes). This is supported
by studies demonstrating a correlation between
repeated-sprint ability and both muscle buffer
capacity and changes in blood pH.[48,184,194]

Greater improvements in repeated-sprint ability
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following training have also been reported in
subjects with greater improvements in muscle
buffer capacity[195] and the sodium-hydrogen ex-
changer[196] – a ubiquitously expressed integral
membrane protein that mediates the exchange of
one extracellular sodium ion with one intracellular
proton, which plays a central role in the regula-
tion of intracellular pH in most cells. In addition,
Bishop et al.[197] have reported a significant
reduction in fatigue during 5 · 6-second sprints
(24-second recovery) following sodium bicarbo-
nate (NaHCO3) administration. In contrast,
Gaitanos et al.[198] indicated no effect of NaH-
CO3 ingestion on performance scores and fatigue
throughout ten 6-second sprints (30-second re-
covery). This discrepancy may be related to dif-
ferent exercise protocols used (cycling vs running)
or the large variability that has often been ob-
served in performance improvement in response
to alkalosis.[199] Further investigations are clearly
required to fully establish the role, if any, of H+

accumulation on the development of fatigue
during MSE.

Recent applied physiological find-
ings[150,167,200] have revealed that K+ and Pi ac-
cumulation may also have a significant role in
muscle fatigue. However, even though the nega-
tive effects of a rise in interstitial [K+] and
intracellular [Pi] have been studied during high-
intensity exercise,[165,201,202] there is no study to
the authors’ knowledge investigating such ionic
aspects during MSE. An interesting observation,
however, was provided by Mohr et al.[166] who
investigated K+ kinetics during three repeated,
intense, one-legged knee extensions with 10-min-
ute recovery (exercise protocol not specific to
the activity patterns of field-based team sports).
They found that, when intense exercise was re-
peated, the rate of K+ accumulation in the initial
phase of exercise was lowered and [K+] at ex-
haustion decreased, suggesting that it is not the
accumulation of K+ in the muscle interstitium per
se that depresses performance when exercise is
repeated.[166] Further research is required to in-
vestigate the consequences of K+ and Pi accu-
mulation during the development of fatigue when
short bouts of exercise are repeated over a long
period of time.

Finally, neural adjustments have been linked
to fatigue occurrence during MSE. However,
very few studies are available on this topic, and
the uncertainty regarding the extent, if any, to
which muscle recruitment impairs MSE perfor-
mance is reflected in the contrasting results of
investigations into the EMG signal. Observation
of steady levels of EMG signal amplitude (as-
sessed through integrated EMG or root mean
square) in prime mover muscles during and after
MSE[203-205] suggests that despite mechanical
performance becoming progressively impaired,
the neural system still recruits motor unit pools at
their highest firing rate. On the other hand, proof
of neural adjustments (i.e. reduction in the cen-
tral neural drive to active musculature and power
spectrum frequency, and inter-muscle coordina-
tion pattern changes) gathered from several
studies demonstrate the progressive inability
of the brain to maintain the initial pattern of
motor unit activation throughout repeated sprint
bouts.[204,206-209] Once again, further research is
required to clarify the neural adjustments that
occur during MSE.

In summary, while fatigue during MSE
is likely to be the result of a spectrum of
events, research supports a predominantly an-
aerobic ATP provision during work periods
and an exclusively aerobic process of recov-
ery.[15,48,128,132,135,186,210-215] Moreover, that both
PCr resynthesis and H+ removal are oxygen-
dependent processes suggests that a high level
of aerobic fitness may convey an enhanced ability
to resist fatigue during this type of work.[123,216]

This is further supported by studies showing
that endurance-trained athletes are better able to
resist fatigue during MSE than their sprint-
trained counterparts,[198,211] and by the correla-
tion between work decrement during MSE and
the peak oxygen consumption obtained during
a graded exercise test (r = -0.62; p< 0.05).[184]

Therefore, if there is a sex difference in repeated-
sprint ability, it is likely to be associated with
sex differences in the aerobic contribution to
repeated sprints, the ability to breakdown and
resynthesise PCr, buffer H+ and/or the ability to
maintain an optimal muscle recruitment pattern
as sprints are repeated.
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2.2.2 Fatigue during Multiple-Sprint Exercise in
Males and Females

Sex differences in fatiguability during MSE (i.e.
the ability to recover from one sprint to the sub-
sequent one) have been poorly examined. To the
best of our knowledge, the first study to investigate
sex differences duringMSEwas conducted in 1990,
with a protocol involving a 6-second sprint on a
non-motorized treadmill repeated ten times with
30 seconds of recovery between each sprint.[104]

The authors demonstrated significant differences
between the sexes; males had a greater peak power
(+25%) and total work (+25%) than females. Once
again (see section 1), the higher absolute scores in
males versus females during MSE may be due to
the typical sex difference in growth factors, anae-
robic metabolism and the area occupied by type II
muscle fibres.

Despite the greater initial sprint performance of
the males (in the study by Brooks and collea-
gues[104] above), the fatigue index (based on work
done) calculated from sprint 1 to sprint 10 was not
significantly different between the sexes. One could
imagine that females were less fit thanmales in this
study, but not enough data were provided on the
subjects’ physical characteristics to support this
assumption. However, another study using a si-
milar protocol (10· 5-second cycle sprints, 10 sec-
onds of recovery) indicated that mean power
decrement (absolute but not relative to leg volume)
from the first to the tenth repetition was greater in
teenage boys than girls (43.8– 7.5% vs 33.9– 7.9%,
respectively; p< 0.05).[59] In addition, males were
found to perform better (both absolute and relative
work) than females during five 6-second cycle
sprints every 30 seconds, but experienced a greater
work decrement than females (13.7– 5.1% vs
11.0– 2.8%, respectively; p< 0.05).[108] Thus, de-
spite the limited research, it appears that males
experience greater absolute decrements in perfor-
mance during MSE. This may be related to the
greater involvement of anaerobic glycolysis, due to
the greater initial power output in males than in
females, and hence subsequent inhibition ofmuscle
glycolysis and contractile mechanisms during later
sprints (see sections 1 and 2.2.1). The sex difference
in the depletion rate of high-energy phosphate
stores and the reduction in central drive may also

contribute to the difference in fatigue resistance in
MSE, but has not yet been investigated. Finally, a
greater aerobic contribution to energy supply in
females would be beneficial to PCr resynthesis
during recovery periods and to the maintenance of
high ATP resynthesis rates during the final sprints.

Esbjörnsson-Liljedahl and colleagues[19,36,54]

have also demonstrated significantly higher peak
(+30%) and mean (+28%) power output and
greater fatigue in males versus females during
a repeated-sprint protocol consisting of repeated
30-second cycle sprints interspersed with 20minutes
of rest. Indeed, during three 30-second Wingate
tests separated with 20 minutes of rest, a decline
in power output among the three sprints was re-
ported in males (8%; p < 0.05) but not in females
(4%; p =NS). The results of this study suggest,
therefore, that females have a greater ability to
restore power between prolonged sprints separated
by long recovery periods.

3. Sex Differences in Physiological
Responses to Sprint Exercise Reanalysed

When comparing skeletal muscle fatiguability
between males and females, there are some
methodological confounds that may affect the
interpretation of the results. For example, diffi-
culties arise when attempting to match the sexes
for absolute power output, relative power output
and training background. This has contributed to
the inability to definitively establish sex differ-
ences in muscle metabolism, the degree of fatigue
development, and the rate of impairment of pos-
sible contributing mechanisms. The following
section therefore demonstrates how this metho-
dological issue affects sprint exercise, and pro-
poses a different interpretation of the current
sprint literature.

3.1 Methodological Concerns

Current research suggests that it is important
to consider differences in absolute performance
(and training background) when investigating the
sex difference in metabolism, performance and
fatigue. This appears particularly important dur-
ing MSE, where a correlation between the initial
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mechanical score and performance decrement
over subsequent sprints has consistently been re-
ported. Indeed, the percentage decrement in me-
chanical output duringMSE has been reported to
be positively correlated with initial sprint perfor-
mance (0.57< r< 0.89; p< 0.05).[48,59,211] Accord-
ingly, Yanagiya et al.[59] explained the greater
fatiguability in teenage boys during an MSE test
(10· 6 seconds, 30-second recovery) via the obser-
vation that boys developed higher power levels

than age-matched girls from the beginning of the
series. A deeper examination of the studies con-
ducted by Billaut et al.[206] and Gaitanos et al.[132]

also shows that the higher the performance reached
in the first sprint during a series of ten all-out bouts,
the greater the decline in power output across
the ten sprints. Interestingly, Gaitanos and co-
workers[132] additionally reported a correlation be-
tween the total work done over the first five sprints
and the increase in blood lactate concentration
(r= 0.88; p< 0.05), and a correlation between blood
lactate concentration and power output decrement
(r= 0.82; p< 0.05). Thus, the greater fatiguability
reported inmales during sprint tasksmay be relatedATP
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to the greater initial sprint performance rather than
actual sex differences.

3.2 Influence of Total Mechanical Work

A deeper examination of the results obtained
during repeated supramaximal sprints reveals
that many of the differences in metabolism and
performance between males and females are
likely to be due to sex differences in the absolute
work performed during the actual task. For ex-
ample, the greater the work performed during a
sprint, or a series of sprints, the greater the
changes in muscle substrates and hormonal re-
sponses.[58,108] Thus, it would be logical to ob-
serve greater metabolic and hormonal dis-
turbances in males, and hence greater perfor-
mance decrements, as they typically perform
more work during a given exercise. It is then
conceivable that this ‘methodological confound’
might contribute to reported sex differences in
skeletal muscle metabolism (i.e. substrate deple-
tion and hormonal responses) and subsequent
performance reported during sprint exercises.

In type I fibres, the exercise-induced glycogen
reduction during a 30-second cycle sprint has
been reported to be 42% smaller in females than
in males, and this was associated with a 22%
smaller increase in blood lactate concentration in
females.[54] However, a closer look at the results
of Esbjörnsson-Liljedahl et al.[54] shows that,
when expressed relative to mean power output
(MPO), the impact of sex on glycogen changes is
strongly reduced, and relative changes in muscle
lactate concentration, actually become higher in
females than in males (figure 3). Interestingly, the
same observations can be made from the data
collected in another study by the same group.[36]

The authors reported that three 30-second cycle
sprints with 20 minutes of recovery induced a
smaller reduction of ATP (absolute values) in
females than in males in type II muscle fibres
(48% vs 62%, respectively; p< 0.05). However,
once again, males developed higher power out-
put levels throughout the sprint bouts, and a
closer examination of those data demonstrates
that sex differences in ATP concentration chan-
ges after sprints are nullified when expressed

relative to MPO. Thus, the higher absolute
changes for ATP after exercise in males seem al-
most completely reduced when values integrate
power output level as a covariate. These results
are consistent with those of Gaitanos et al.,[132]

who reported a strong correlation between work
done during a 6-second sprint and changes in
metabolites.

These analyses highlight the role of the work
performed during exercise to account for the
reported sex differences in performance, muscle
metabolism and hormonal responses during
repeated-sprint exercise. The greater perturba-
tions observed in males might come from the
fact that males actually perform significantly
more mechanical work than females during a
given sprint. This in turn is likely to lead to
greater decrements in performance, as Gaitanos
and colleagues[132] have shown that performance
decrement is related to anaerobic metabolism
during the first sprint. Furthermore, the validity
of comparing powerful with less powerful
subjects (males and females, respectively, in this
review) has frequently been questioned, as a
greater initial sprint performance is positively
correlated with a greater performance decre-
ment.[48,59,132] This raises the possibility that the
often-observed sex differences in fatiguability
may actually be due to inappropriate comparison
methods rather than actual sex differences.

Rather, it is likely that if body dimensions and
initial maximal performance are satisfactorily co-
varied, the changes in muscle metabolism and
fatigue associated with sprint activity will largely
depend on the absolute mechanical work per-
formed by subjects. Such a methodological con-
found has previously been highlighted by our
group in abstract form.[108] We investigated the
sex difference in muscle metabolism during a
MSE consisting of five all-out sprints lasting
6 seconds repeated every 30 seconds. Both absolute
(kJ) and relative (J/kg) work values were greater
in males than in females. As expected, the work
decrement (%) over five sprints was greater in
males (males 13.7 – 5.1%, females 11.0 – 2.8%;
p < 0.05). The sprints were accompanied by
greater absolute changes in ATP, PCr, creatine
and lactate concentrations in males than in
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females (figure 4). However, when expressed in
relative terms (i.e. per kJ of work), only sex dif-
ferences in PCr and creatine persisted – but were
inverted. Sex differences in muscle metabolism
then appeared to be largely due to differences in
the absolute work performed by males and fe-
males.[108] Thus, these results suggest that unless
males and females are matched for total work (or
total work is used as a covariate), it is very diffi-
cult to compare decrements in performance dur-
ing repeated sprint exercise, as differences in
hormonal and metabolic responses are likely to
affect the development of fatigue.

4. Summary and Future Directions

The investigation of skeletal muscle fatigue in
males and females must be made with appropriate
comparison methods. Studies of the fatiguability
and metabolic and hormonal responses of males
and females during MSE have, in our opinion, not
been optimally designed to control for possible
covariates. Rather than taking into account only
the strength or power output capacity of the rested
muscle, studies dedicated to understanding sex
differences should incorporate the total mechan-
ical work done by each sex during exercise as a
covariate. Furthermore, studies are warranted
where males and females are matched for both in-
itial power and activity levels.

Although it is tempting to propose that males
are more susceptible to fatigue than females for a
given sprint, we must emphasize the need for
more basic research comparing exercise tolerance
between the sexes. In addition, greater investiga-
tion of the influence of initial force on the me-
chanisms of fatigue in males versus females is
needed. It is encouraging to see a number of stu-
dies using advanced techniques to analyse muscle
fatigue aetiology under a variety of conditions. It
is probable, however, that our uncertainty sur-
rounding the understanding of the sex difference
in muscle fatigue stems from scientists from di-
verse specialist fields having taken a local ap-
proach, in an attempt to solve the underlying
cause of fatigue. Multiple-sprint activity requires
bouts of all-out intensity to be repeated several
times with incomplete recovery. The potential

sex difference in voluntary activation of active
muscles has not been sufficiently examined dur-
ing sprint activity; the greater impairment of
central drive in males during discrete tasks (e.g.
contraction of dorsiflexor and elbow flexor mus-
cles) may also be found during whole-body
sprinting. Furthermore, the use of transcranial
magnetic stimulation would be a powerful com-
plement for investigating the contribution of su-
praspinal fatigue to task failure during repeated
sprints in males and females.
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153. Spriet L, Söderlund K, Bergström M, et al. Skeletal muscle
glycogenolysis, glycolysis, and pH during electrical
stimulation in men. J Appl Physiol 1987; 62 (2): 616-21

154. Allen DG, Westerblad H, Lännergren J. The role of in-
tracellular acidosis in muscle fatigue. Adv Exp Med Biol
1995; 384: 57-68

155. Harris R, Edwards R, Hultman E, et al. The time course of
phosphorylcreatine resynthesis during recovery of the
quadriceps muscle in man. Pflügers Arch 1976; 367: 137-42
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